Атомно-силовой микроскоп

Скачать

Основы сканирующей зондовой микроскопии. История изобретения атомно-силового микроскопа. Основные технические сложности при создании микроскопа. Конструкция атомно-силового микроскопа, преимущества в сравнении с растровым электронным микроскопом.

Размер: 231,8 K
Тип: курсовая работа
Категория: Коммуникации и связь
Скачать

Другие файлы:

Атомно-силовой микроскоп. Применение
Молекулярно-лучевое эпитаксиальное (МЛЭ) наращивание на подложке монокристаллических слоев полупроводниковых веществ. Атомно-силовой микроскоп: сфера...

Атомный силовой микроскоп
Создание атомного силового микроскопа, принцип действия, преимущества и недостатки. Методы атомно-силовой микроскопии. Технические возможности атомног...

Исследование биологических объектов с помощью методов атомно-силовой микроскопии
Сканирующий туннельный микроскоп, применение. Принцип действия атомного силового микроскопа. Исследование биологических объектов – макромолекул (в том...

Изучение влияния наночастиц диоксида титана на клеточную мембрану методом атомно-силовой спектроскопии
Проблема зависимости цитотоксических свойств наночастиц от их кристаллической структуры. Изучение степени воздействия наночастиц на клеточную мембрану...

Исследование топографии поверхностных твердых тел методом атомно-силовой микроскопии в неконтактном режиме. Описание лабораторной работы.
В данной лабораторной работе рассматриваются физические принципы работы сканирующего атомного силового микроскопа в неконтактном режиме и методика исс...


Краткое сожержание материала:

Размещено на

Содержание

Введение

1. Атомно-силовая микроскопия

2 История изобретения атомно-силового микроскопа

3. Конструкция атомно-силового микроскопа

4. Принцип работы

4.1 Режимы работы

5. Основные технические сложности при создании микроскопа

Заключение

Библиографический список использованной литературы

Введение

С понятием зондовой микроскопии связано осуществление многовековой мечты человечества - увидеть атомы. Атомно-силовая микроскопия (как и в целом зондовая микроскопия) - относительно новое направление (а точнее, метод) в науке, и его использование кажется сейчас просто безграничным.

В настоящее время сканирующий зондовые микроскопы нашли применение практически во всех областях науки. В физике, химии, биологии используют в качестве инструмента исследования АСМ. В частности, такие междисциплинарные науки, как биофизика, материаловедение, биохимия, фармацевтика, нанотехнологии, физика и химия поверхности, электрохимия, исследование коррозии, электроника (например, МЭМС), фотохимия и многие другие.

зондовый атомный силовой микроскоп

1. Атомно-силовой микроскоп

Атомно-силовая микроскопия - вид зондовой микроскопии, в основе которого лежит силовое взаимодействие атомов (строго говоря обменное взаимодействие атомов зонда и исследуемого образца).

Атомно-силовой микроскоп (АСМ, англ. AFM -- atomic-force microscope) --сканирующий зондовый микроскоп высокого разрешения. Используется для определения рельефа поверхности с разрешением от десятков ангстрем вплоть до атомарного.

В отличие от сканирующего туннельного микроскопа, с помощью атомно-силового микроскопа можно исследовать как проводящие, так и непроводящие поверхности.

Принцип действия атомного силового микроскопа (АСМ) основан на использовании сил атомных связей, действующих между атомами вещества. На малых расстояниях между двумя атомами действуют силы отталкивания, а на больших - силы притяжения. Совершенно аналогичные силы действуют и между любыми сближающимися телами. В сканирующем атомном силовом микроскопе такими телами служат исследуемая поверхность и скользящее над нею острие. Обычно в приборе в качестве зонда используется игла с площадью острия в один или несколько атомов, закрепленная на кантилевере, который плавно скользит над поверхностью образца. На выступающем конце кантилевера (над шипом) расположена зеркальная площадка, на которую падает и от которой отражается луч лазера. Когда зонд опускается и поднимается на неровностях поверхности, отраженный луч отклоняется, и это отклонение регистрируется фотодетектором, а сила, с которой шип притягивается к близлежащим атомам - пьезодатчиком. Данные фотодетектора и пьезодатчика используются в системе обратной связи, которая может обеспечивать, например, постоянную величину силу взаимодействия между микрозондом и поверхностью образца. В результате, можно строить объёмный рельеф поверхности образца в режиме реального времени. Разрешающая способность данного метода составляет примерно 0,1-1 нм по горизонтали и 0,01 нм по вертикали.

С помощью атомно-силового микроскопа можно получать изображения как физических объектов, так и биологических и химических объектов (вирусов и бактерий, атомов и молекул). Разрешение таких микроскопов достигает доли нанометров, что позволяет наблюдать атомы! Получением изображений не ограничиваются возможности этого прибора. С помощью атомно-силового микроскопа можно изучать взаимодействие двух объектов: измерять силы трения, упругости, адгезии, а также перемещать отдельные атомы, осаждать и удалять их с какой-либо поверхности.

2. История изобретения атомно-силового микроскопа

Атомно-силовой микроскоп был создан в 1986 году Гердом Биннигом, и Кельвином Куэйтом и Кристофером Гербером в США, как модификация изобретённого ранее сканирующего туннельного микроскопа.

Для определения рельефа поверхностей непроводящих тел использовалась упругая консоль (кантилевер), отклонение которой, в свою очередь, определялось по изменению величины туннельного тока, как в сканирующем туннельном микроскопе. Однако такой метод регистрации изменения положения кантилевера оказался не самым удачным, и двумя годами позже была предложена оптическая схема: луч лазера направляется на внешнюю поверхность кантилевера, отражается и попадает на фотодетектор. Такой метод регистрации отклонения кантилевера реализован в большинстве современных атомно-силовых микроскопов.

Изначально атомно-силовой микроскоп фактически представлял собой профилометр, только радиус закругления иглы был порядка десятков ангстрем. Стремление улучшить латеральное разрешение привело к развитию динамических методов. Дальнейшее развитие атомно-силовой микроскопии привело к возникновению таких методов, как магнитно-силовая микроскопия, силовая микроскопия пьезоотклика, электро-силовой микроскопии.

3. Конструкция атомно-силового микроскопа

Кантилевер (от англ. cantilever - консоль, балка) -- одна из основных составных частей сканирующего зондового микроскопа представляет собой массивное прямоугольное основание, размерами примерно 1,5?3,5?0,5 мм, с выступающей из него балкой (собственно кантилевером), шириной порядка 0,03 мм и длиной от 0,1 до 0,5 мм. На нижнем конце кантилевера располагается игла, взаимодействующая с образцом. Радиус острия иглы промышленных кантилеверов находится в пределах 5 -- 90 нм, лабораторных -- от 1 нм.

Верхняя сторона кантилевера над иглой является зеркальной для отражения лазерного луча. В некоторых случаях для улучшения отражающей способности кантилевера на него напыляют тонкий слой алюминия. По своей структуре кантилевер чаще всего представляет собой монокристалл кремния или нитрида кремния. Игла также может быть из кремния, нитрида кремния или алмаза.

Основными конструктивными составляющими атомно-силового микроскопа являются:

§ Жёсткий корпус, удерживающий систему

§ Держатель образца, на котором образец впоследствии закрепляется

§ Устройства манипуляции

В зависимости от конструкции микроскопа возможно движение зонда относительно неподвижного образца или движение образца, относительно закреплённого зонда.

Манипуляторы делятся на две группы. Первая группа предназначена для "грубого" регулирования расстояния между кантилевером и образцом (диапазон движения порядка сантиметров), вторая - для прецизионного перемещения в процессе сканирования (диапазон движения порядка микрон).
В качестве прецизионных манипуляторов (или сканеров) используются элементы из пьезокерамики. Они способны осуществлять перемещания на расстояния порядка ангстрем.

§ Зонд

§ Система регистрации отклонения зонда

Существует несколько возможных систем:

-Оптическая (включает лазер и фотодиод, наиболее распространённая)

-Интерферометрическая (состоит из лазера и оптоволокна)

-Ёмкостная (измеряется изменение ёмкости между кантилевером и расположенной выше неподвижной пластиной)

-Туннельная (исторически первая, регистрирует изменение туннельного тока между проводящим кантилевером и расположенной выше туннельной иглой)

§ Система обратной связи

§ Управляющий блок с электроникой

4. Принцип работы

Рис1. Схема работы атомно-силового микроскопа

Рассмотрим подробнее, какие силы действуют между зондом и исследуемой поверхностью. Для начала обратимся к взаимодействию двух атомов (молекул).

На небольших расстояниях все атомы и молекулы притягиваются. Это притяжение имеет чисто квантовую природу. Оно связано с коррелированными, то есть согласованными колебаниями электронов в обоих атомах. Энергия пары атомов, где электроны смещены (поляризованы) одинаковым образом, -- чуть меньше, чем энергия пары неполяризованных атомов. И энергия эта спадает с расстоянием между атомами как 1/r6.

Общая энергия взаимодействия атомов приближённо описывается формулой Леннарда-Джонса (потенциал типа (6-12)):

U(r)=E0((rmin/r)12-(rmin/r)6)

Здесь первое слагаемое отвечает за отталкивание, оно начинает “работать” при малых расстояниях, когда вторым, притяжением, уже можно пренебречь. При этом r0 - это расстояние между атомами, соответствующее минимальной энергии системы, то есть наиболее выгодной, а rmin - расстояние, при котором энергия взаимодействия обращается в нуль.

Принцип работы атомно-силового микроскопа основан на регистрации силового взаимодействия между поверхностью исследуемого образца и зондом. В качестве зонда используется наноразмерное остриё, располагающееся на конце упругой консоли, называемой кантилевером. Сила, действующая на зонд со стороны поверхности, приводит к изгибу консоли. Появление возвышенностей или впадин под остриём приводит к изменению силы, действующей на зонд, а значит, и изменению величины изгиба кантилевера. Таким образом, регистрируя величину изгиба, можно сделать вывод о рельефе поверхности.

Под силами, действующими между зондом и образцом, в первую очередь подразумевают дальнодействующие силы Ван-дер-Ваальса, которые сначала являются силам...