Атомно-абсорбционный спектрохимический анализ

Скачать

Природа спектров электромагнитного излучения и структура атомов. Явление абсорбции света, принципы спектрального и атомно-абсорбционного анализа. Сущность закона Бугера-Ламберта-Бера. Фотоколориметрические методы измерения интенсивности окраски растворов.

Размер: 556,9 K
Тип: курсовая работа
Категория: Химия
Скачать

Другие файлы:

Атомно-абсорбционный анализ
В настоящем сборнике подробно освещены работы по аппаратуре и методам атомно-абсорбционного анализа, опубликованные в советской и зарубежной научной л...

Атомно-абсорбционный анализ

Атомно-абсорбционный анализ
В книге рассмотрено современное состояние атомно-абсорбционного анализа и на конкретных примерах показаны возможности его применения в различных облас...

Атомно-абсорбционный анализ
Метод атомно-абсорбционного спектрального анализа отличается высокой абсолютной и относительной чувствительностью. Метод позволяет с большой точностью...

Определение содержания бария в образце минерала
Использование новых методов определения содержания элементов. Пламенно-фотометрический, атомно-абсорбционный, спектральный, активационный, радиохимиче...


Краткое сожержание материала:

Размещено на

33

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Магнитогорский государственный университет»

Физико-математический факультет

Кафедра физики и методики обучения физике

КУРСОВАЯ РАБОТА

Атомно-абсорбционный спектрохимический анализ

Выполнила: студентка 46 группы

010701 Физика

Юмагужина И.З.

Научный руководитель:

доцент Подкопаева Е.Н.

Магнитогорск 2013

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

ГЛАВА 1. СПЕКТРОСКОПИЯ

1.1 Природа спектров и структура атомов

1.2 Спектрофотометрия

1.2.1 Спектральный анализ

1.2.2 Явление абсорбции света

1.2.3 Принципы атомно-абсорбционного анализа

ГЛАВА 2. ОСНОВЫ ФОТОКОЛОРИМЕТРИИ

2.1 Закон Бугера-Ламберта-Бера

2.2 Фотоколориметрический метод анализа

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ ИНФОРМАЦИИ

ВВЕДЕНИЕ

Первые опыты аналитического применения атомно-абсорбционной спектроскопии были проведены Уолшем с пламенем и опубликованы в 1955 г. В дальнейшем пламенная атомно-абсорбционная спектрометрия получила широкое развитие, и в настоящее время она является одним из основных методов рутинного анализа в различных областях науки и техники. Развитие индустрии и большое число производственных отходов создают необходимость постоянного экологического контроля за состоянием окружающей среды. Загрязнение тяжелыми металлами во многом характеризует степень техногенного воздействия на природу.

Цель данной курсовой: раскрыть теоретические основы и особенности применения атомно-абсорбционного спектрохимического анализа.

Для реализации поставленной цели предлагается решение следующих задач:

· раскрыть природу спектров, структуру атомов, теоретические основы спектрального анализа;

· изучить методику атомно-абсорбционного анализа.

ГЛАВА 1. СПЕКТРОСКОПИЯ

1.1 Природа спектров и структура атомов

Спектр электромагнитного излучения - упорядоченная по длинам совокупность монохроматических волн, на которую разлагается свет или иное электромагнитное излучение. Типичный пример спектра - хорошо известная всем радуга.

Каждый атом и молекула имеют уникальное строение, которому соответствует свой уникальный спектр.

При электрическом или тепловом возбуждении атомы или молекулы различных сплавов способны излучать электромагнитные волны. Спектры излучения состоят из отдельных спектральных линий, которые закономерно могут быть объединены в серии.

Исследования спектров излучения разряженных газов (т.е. спектров излучения отдельных атомов) показали, что каждому газу присущ определенный линейчатый спектр, состоящий из отдельных спектральных линий или групп близко расположенных линий. Самым изученным является спектр наиболее простого атома - атома водорода [1].

Швейцарский ученый И. Бальмер подобрал эмпирическую формулу, описывающую все известные в то время спектральные линии атома водорода в видимой области спектра:

= R' ( - ) (n=3, 4, 5, …), (1)

где R' = 1,10 - постоянная Ридберга.

Так как

н = R () (n=3, 4, 5, …), (2)

где R = R'c = 3,29 * - также постоянная Ридберга.

Из выражений (1) и (2) вытекает, что спектральные линии, отличающиеся различными значениями n, образуют группу или серию линий, называемую серией Бальмера. С увеличением nлинии серии сближаются; значение n=? определяет границу серии, к которой со стороны больших частот примыкает сплошной спектр.

В дальнейшем в спектре атома водорода было обнаружено еще несколько серий. В ультрафиолетовой области спектра находится серия Лаймана:

н = R () (n=2, 3, 4, …).

В инфракрасной области спектра были также обнаружены:

серия Пашена н = R () (n=4, 5, 6, …);

серия Брэкета н = R () (n=5, 6, 7, …);

серия Пфунда н = R () (n= 6, 7, 8, …);

серия Хэмфри н = R () (n= 7, 8, 9, …).

Риc. 1.1

Все приведенные выше серии в спектре атома водорода могут быть описаны одной формулой, называемой обобщенной формулой Бальмера:

н = R (),

где m имеет в каждой данной серии постоянное значение, m= 1,2,3,4,5,6 (определяет серию), nпринимает целочисленные значения начиная с m+1 (определяет отдельные линии этой серии).

Исследование более сплошных спектров - спектров паров щелочных металлов (например, Li, Na, K) - показало, что они представляются набором незакономерно расположенных линий. Ридбергу удалось разделить их на три серии, каждая из которых располагается подобно линиям бальмеровской серии [3].

Совокупность всех частот (длин волн) электромагнитного излучения называют электромагнитным спектром. Интервал длин волн разбивают на области:

· ультрафиолетовая (УФ);

· видимая;

· инфракрасная (ИК).

Рис.1.2 Области оптического излучения

Видимый спектр простирается от 750 нм (красная граница) до 400 нм (фиолетовая граница). Свет этих длин волн воспринимается человеческим глазом, и именно на эту область приходится большое число спектральных линий атомов. Энергии, которую сообщают молекуле вещества излучения УФ- и видимой части спектра, достаточно, чтобы вызвать изменение электронного состояния молекулы. Энергия ИК-лучей меньше, поэтому ее оказывается достаточно только для того, чтобы вызвать изменение энергии колебательных и вращательных переходов в молекуле вещества. Таким образом, в различных частях спектра можно получить различную информацию о состоянии, свойствах и строении веществ.

Структура спектра атома, молекулы или образованной ими макросистемы определяется их энергетическими уровнями. Согласно законам квантовой механики, каждый энергетический уровень соответствует определенному квантовому состоянию. Электроны и ядра в таком состоянии совершают характерные периодические движения, для которых энергия, орбитальный момент количества движения и другие физические величины строго определены и квантованы, т.е. принимают лишь разрешенные дискретные значения, соответствующие целым и полуцелым значениям квантовых чисел. Если известны силы, связывающие электроны и ядра в единую систему, то по законам квантовой механики можно рассчитать ее уровни энергии и квантовые числа, а также предсказать интенсивности и частоты спектральных линий. С другой стороны, анализируя спектр конкретной системы, можно определить энергии и квантовые числа состояний, а также сделать выводы относительно действующих в ней сил. Таким образом, спектроскопия является основным источником сведений о квантово-механических величинах и о строении атомов и молекул.

В атоме наиболее сильное взаимодействие между ядром и электронами обусловлено электростатическими, или кулоновскими силами. Каждый электрон притягивается к ядру и отталкивается всеми остальными электронами. Это взаимодействие определяет структуру энергетических уровней электронов. Внешние (валентные) электроны, переходя с уровня на уровень, испускают или поглощают излучение в ближней инфракрасной, видимой и ультрафиолетовой областях. Энергии переходов между уровнями внутренних оболочек соответствуют вакуумной ультрафиолетовой и рентгеновской областям спектра. Более слабым является воздействие электрического поля на магнитные моменты электронов. Это приводит к расщеплению электронных уровней энергии и, соответственно, каждой спектральной линии на компоненты (тонкая структура). Кроме того, ядро, обладающее ядерным моментом, может взаимодействовать с электрическим полем орбитальных электронов, вызывая дополнительное сверхтонкое расщепление уровней энергии [9].

При сближении двух или более атомов между их электронами и ядрами начинают действовать силы взаимного притяжения и отталкивания. Итоговый баланс сил может привести к уменьшению полной энергии системы атомов - в этом случае образуется стабильная молекула. Строение молекулы в основном определяется валентными электронами атомов, а молекулярные связи подчиняются законам квантовой механики. В молекуле наиболее часто встречаются ионные и ковалентные связи. Атомы в молекуле испытывают непрерывные колебания, а сама молекула вращается как целое, поэтому у нее возникают новые энергетические уровни, отсутствующие в изолированных атомах. Энергии вращения меньше колебательных энергий, а колебательные - меньше электронных. Таким образом, в молекуле каждый электронный уровень энергии расщепляется на ряд близко расположенных колебательных уровней, а каждый колебательный уровень, в свою очередь, на тесно расположенные вращательные подуровни. В результате в молекулярных спектрах колебательные переходы имеют вращательную стру...