Ракета "воздух-воздух"

Скачать

Ракета с активной радиолокационной ГСН для слежения за целью. Дальность действия ракеты "воздух-воздух". Повышение точности и помехоустойчивости ракет. Основные тактико-технические характеристики. Радиокомандная и радиолокационная системы наведения.

Размер: 70,2 K
Тип: реферат
Категория: Военное дело и гражданская оборона
Скачать

Другие файлы:

Автоматизированная Система Управления ВОЗДУХ-1
В настоящем Учебнике изложены основные принципы организации боевой работы в соединении ПВО, оснащенном системой Воздух-1...

Советские авиационные ракеты "ВОЗДУХ-ВОЗДУХ"
rar...

Hughes/Raytheon. AIM-120 AMRAAM. Operations Guide
Руководство для управляемой всепогодной ракеты (УР) класса "воздух - воздух" средней дальности “AIM-120 AMRAAM”....

Основы проектирования ракет класса воздух-воздух
Описание: Для тех, кто интересуется современной высокотехнологичной военной техникой.Ракеты "воздух-воздух", в отличие от других типов ракет, обладают...

Воздух и его применение
Каждый знает, что воздух необходим для жизни. Воздухом дышат все живые существа как на земле, так и в воде. Известно, что человек не может прожить без...


Краткое сожержание материала:

Размещено на

Ракета «воздух-воздух»

Ракета «воздух-воздух» (В-В) -- управляемая авиационная ракета, предназначенная для поражениялетательных аппаратов. В англоязычной литературе обозначается как AAM, сокращение от англ. air-to-air missile. Первые управляемые ракеты данного класса появились в конце Второй мировой войны в Германии. С помощью ракеты «воздух-воздух» первая победа была одержана 24 сентября 1958 года. Ракеты «воздух-воздух» классифицируются по дальности и типу головки самонаведения.

24 сентября 1958 года истребитель ВВС Тайваня F-86 атаковал МиГ-15 ВВС Китая ракетой AIM-9B Sidewinder и сбил его. Эта победа считается первой, одержанной с помощью ракеты «воздух-воздух».

Дальность действия

По дальности действия ракеты «воздух-воздух» разделяют на[13]:

малой дальности (англ. short-range AAM, SRAAM) -- Предназначены для поражения ЛА в пределах визуального обнаружения цели; как правило, оснащены инфракрасными системами наведения.

средней дальности (англ. medium-range AAM, MRAAM) -- Ракеты с дальностью до 100 км; как правило, имеют радиолокационную ГСН.

большой дальности (англ. long-range AAM, LRAAM) -- Дальность действия более 100 км; оснащены комбинированной системой наведения, состоящей из инерциально-корректируемой и активной или полуактивной ГСН для наведения на конечном участке.

В качестве дальности действия ракеты обычно указывают дальность полёта ракеты в идеальных условиях (в англоязычной литературе эффективная дальность пуска, то есть дальность при которой цель не сможет уклонится от выпущенной по ней ракете, обозначается как no-escape zone).

ГСН

автоматическое измерительное устройство, устанавливаемое на самонаводящихся ракетах и предназначенное для выделения цели на окружающем фоне и измерения параметров относительного движения ракеты и цели, используемых для формирования команд управления ракетой.

ГСН воспринимают энергию, излучённую или отражённую целью. Могут использоваться различные виды излучения: радиоизлучение, инфракрасное (в том числе тепловое), акустическое. В зависимости от местоположения источника энергии различают пассивные, полуактивные и активные ГСН.

Пассивные ГСН воспринимают излучение, создаваемое целью. Это могут быть сигналы работающих радиолокационных станций противника или передатчиков помех, а также оптическое излучение цели в инфракрасном и видимом диапазонах спектра, которое используется тепловыми и телевизионными ГСН. Полуактивные ГСН принимают сигнал, отражённый от цели при облучении её источником подсвета, находящимся вне ракеты, -- на самолете-носителе или пункте наведения. Активные ГСН облучают цель с помощью передатчика, который входит в их состав, а также принимают отражённый сигнал. Полуактивные и активные ГСН строятся с использованием радиолокационного и оптического когерентного (лазерного) излучения.

Для повышения точности и помехоустойчивости в ГСН могут сочетаться различные принципы работы в зависимости от воспринимаемой энергии излучения цели и приёмники различных диапазонов электромагнитного излучения. ГСН могут быть полуактивно-активными, активно-радиометрическими, теплорадиолокационными. ГСН принимает данные целеуказания, производит поиск цели по координатам, анализирует принимаемый сигнал, селектирует цель на фоне естественных и организованных помех, осуществляет захват цели и автоматическое сопровождение её по координатам.

Основные тактико-технические характеристиками ГСН являются: дальность захвата цели в свободном пространстве и на фоне естественных помех (подстилающей поверхности, облачного фона); измеряемые координаты, диапазон их возможных изменений; точность автоматического сопровождения, в том числе при подлёте к цели; разрешающая способность, или возможность выделения одной цели из состава плотной группы; устойчивость к организованному противодействию противника (помехоустойчивость), характеризуемая вероятностью захвата и точностью сопровождения цели и в конечном счёте вероятностью её поражения; массо-габаритные и энергетические показатели, определяющие использование ГСН на ракете.

ГСН обычно размещается в головном отсеке ракеты.

Повышение тактико-технических требований и усложнение условий работы обусловливают применение в современной ГСН новейших достижений микроэлектроники, использование всё более сложных структур излучаемых сигналов (импульсных, непрерывных, квазинепрерывных, сигналов с внутренними модуляциями) и совершенствование их обработки с применением цифровых методов на основе микропроцессоров.

Система наведения

Управляемые ракеты пеленгуют радиолокационное или инфракрасное излучение цели и сближаются с ней до подрыва боевого заряда. Как правило, боевая часть подрывается неконтактным взрывателем на некотором расстоянии от цели. Цель поражается либо осколками оболочки боевого заряда, либо стержнями, которые способны перерубить летательный аппарат. Для случаев прямого попадания ракета имеет контактный взрыватель.

Несмотря на то, что ракета использует бортовую РЛС или инфракрасный датчик для пеленгации цели, для обнаружения цели обычно используется оборудование самолёта-истребителя, причём целеуказание может быть получено разными способами. Ракеты с ИК ГСН могут получить целеуказание (направление на цель) от бортовой РЛС истребителя, а ракеты с радиолокационной ГСН могут быть запущены по целям, обнаруженным визуально или с помощью оптико-электронных систем целеуказания. Однако им потребуется подсветка цели бортовой РЛС во время всего перехвата или начальной стадии, в зависимости от типа радиолокационной ГСН.

Радиокомандная (РК)

Первые ракеты «воздух-воздух» оснащались радиокомандной системой наведения. Пилот должен был управлять пущенной ракетой с помощью джойстика, установленного в кабине. Управляющие импульсы передавались на ракету сначала по проводам, затем по радиоканалу. В хвостовой части ракеты с такой системой наведения обычно устанавливался трассер. Ракеты с ручным управлением обладали крайне низкой вероятностью поражения цели[19].

В дальнейшем систему автоматизировали. Теперь истребитель формировал узкий радиолуч, направленный строго на цель. Ракета запускалась внутрь луча, где удерживалась автопилотом на основании сигналов от расположенных в задней части ракеты датчиков. До тех пор, пока истребитель удерживал луч на цели, ракета двигалась по направлению к ней. Относительно простая технически система оказалась очень сложной в эксплуатации, так как пилоту было очень сложно удерживать луч на цели, одновременно пилотируя самолёт и наблюдая за воздушным пространством, чтобы самому не стать объектом атаки. К тому же истребителю не приходилось рассчитывать на прямолинейный, равномерный полёт цели во время наведения.

Радиокомандной системой наведения оснащены:

Ruhrstahl X-4 -- Германия (ручное, по проводам)

Henschel Hs.298 -- Германия (ручное, по радиоканалу)

К-5 -- СССР (автоматизированное, по радиолучу)

AA.20 -- Франция (ручное, по радиоканалу)

Радиолокационная

Радиолокационная система наведения, как правило, используется в ракетах средней и большой дальности, так как на таких дистанциях инфракрасное излучение цели слишком мало для уверенного сопровождения инфракрасной ГСН. Есть два типа радиолокационных головок самонаведения: активная и полуактивная.

Методы уклонения от ракет с радиолокационными ГСН включают активное маневрирование, отстрел дипольных отражателей и постановку помех системами РЭБ.

Активная радиолокационная (АРЛС)

Ракета с активной радиолокационной ГСН для слежения за целью имеет свою собственную РЛС с излучателем и приёмным устройством. Тем не менее, дальность действия РЛС ракеты зависит от размера антенны, которая ограничена диаметром корпуса ракеты, поэтому ракеты с АРЛС ГСН используют дополнительные методы для сближения с целью на дистанцию действия бортовой РЛС. К ним относятся инерциально-корректируемый метод наведения и полуактивный радиолокационный.

Активной радиолокационной ГСН оснащены:

Р-27АЭ -- СССР

Р-37 -- Россия

Р-77 -- Россия

AIM-54 Phoenix -- США

AIM-120 AMRAAM -- США

MICA EM -- Франция

Полуактивная радиолокационная (ПРЛС)

Ракеты с полуактивной радиолокационной ГСН не имеют своего собственного излучателя. ПРЛС ГСН принимает отражённый от цели сигнал РЛС самолёта-носителя ракеты, таким образом для наведения ракеты с ПРЛС ГСН атакующий самолёт должен облучать цель до окончания перехвата, что ограничивает его манёвр. Ракеты с ПРЛС ГСН более чувствительны к помехам, чем ракеты с активной РЛС, так как радиолокационный сигнал при полуактивном наведении должен преодолеть большее расстояние.

Полуактивной радиолокационной ГСН оснащены

Skyflash -- Великобритания

Aspide -- Италия

Р-27 -- СССР

AIM-7 Sparrow -- США

Super R 530 -- Франция

Инфракрасная (ИК)

Инфракрасная головка самонаведения наводится на тепло, излучаемое целью. Ранние варианты ИК ГСН имели низкую чувствительность, поэтому могли наводится только на сопло работающего двигателя. Для использования такой ракеты атакующий самолёт должен был при её запуске находится в задней полусфере цели[3...